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Introduction
Motivation

I Neuroscience: assess natural processing, i.e. fMRI –
reduce dimensions to main activity during shown stimulus

I Problems: high-dimensional data, expensive labels
I Goal: Canonical Correlation Analysis in semi-supervised

learning framework



Paired Data

I Samples in 2 modalities: representations of 1 process,
→ labeled video shown during fMRI acquisition

Illustration:

fMRI data: (labeled) X = {x1, x2, . . . , xn}, (unlabeled) {xn+1, . . . , xp}
Corresponding labels: Y = {y1 = 1, y2 = 0, . . . , yn}
→ Paired data (fMRI with labels): (x1, y1), (x2, y2), . . . , (xn , yn)



Canonical Correlation Analysis (CCA)
I Finds projection directions in each modality’s subspace

that maximize correlation between the projected data
→ Not directions of (potentially noisy) maximal variance



Kernel Canonical Correlation Analysis
I CCA: maximize correlation between X and Y projections

Optimize CCA e.g. as a generalized eigenvalue problem:

max
wx ,wy
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(wT
x Cxxwx)(wT
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(1)

I Kernelized CCA (KCCA): general, optimization easier
I Regularized KCCA: avoid degenerate solutions

Optimize Tikhonov regularized KCCA:
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Manifold assumption

I Manifold assumption: high-dimensional data lie on a
low-dimensional manifoldM (Belkin et al., 2006)

I Functions should vary smoothly alongM – small gradient
I Estimate the gradient ∇M by constructing a graph along

the manifoldM:

Samples of manifold Graph estimate of manifold



Laplacian Regularization

I Gradient estimate ∇M of functions alongM leads to
Laplacian regularization – adding term L to
optimization enforces smoothness along the manifold

I Optionally unlabeled data can be included to improve
estimate of manifold → semi-supervised

Poor estimate: Graph with few data points Better estimate: Graph with more data points



Semi-supervised Learning
Semi-supervised Laplacian regularization of KCCA (SSKCCA)

Laplacian regularized SSKCCA:

max
α,β
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with regularizers

Rx̂ = εxKx̂ x̂︸ ︷︷ ︸+ γx

m2
x
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Tikhonov Laplacian

I SSKCCA will favor directions α and β whose projections
are smooth along the manifold (Blaschko et al., 2008)



Experiments
Methods and Data

I fMRI data (X): human volunteer during viewing of 2
movies

- 350 time slices of 3D fMRI brain volumes per movie

I Labels (Y ): Continuous labels, 1 movie – 5 observers’
scores:
Faces - Color - Bodies - Language - Motion (Bartels and Zeki 2004)

I Linear kernel in all experiments



Experiments

(a) KCCA with Tikhonov regularization
→ labeled data only

(b) KCCA with Tikhonov and Laplacian regularization
→ labeled data only

(c) SSKCCA with Tikhonov and Laplacian regularization
→ labeled and unlabeled data

I Model Selection: criterion from (Hardoon et al., 2004) to
optimize over the regularization parameters (εx and γx)



Experiments
Results – Quantitative

Mean holdout correlations from five-fold cross validation across [each of the five]
variables in all experiments.

Labels

→ SSKCCA generalizes better than KCCA



Experiments
Results – Qualitative

Visualization of learned weight vectors for faces

KCCA, Tikhonov regularization SSKCCA, Tikhonov and Laplacian regularization

→ SSKCCA localizes regions of brain activity,
following (Bartels and Zeki, 2004)



Summary

I SSKCCA learned expected regions of brain activity
corresponding to input stimuli (Bartels and Zeki, 2004)

I KCCA with Laplacian regularization improves correlation
by enforcing smoothness of projections along the manifold

I SSKCCA with use of unlabeled data further improves
performance

I Check out poster M26 for our extension of this work
using resting state fMRI data as an unlabeled data source



Summary

I SSKCCA learned expected regions of brain activity
corresponding to input stimuli (Bartels and Zeki, 2004)

I KCCA with Laplacian regularization improves correlation
by enforcing smoothness of projections along the manifold

I SSKCCA with use of unlabeled data further improves
performance

I Check out poster M26 for our extension of this work
using resting state fMRI data as an unlabeled data source

Thanks.
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Appendix
Kernelization

max
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We denote Hx the reproducing kernel Hilbert space (RKHS) associated with kx , and
denote the associated feature map φx : X → H, i.e. kx(xi , xj) = 〈φx(xi), φx(xj)〉.
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Denoting the kernel matrix computed using the data in X as Kxx ∈ Rn×n , the matrix
computed using X̂ and X as Kx̂x ∈ Rmx×n , the matrix computed using X̂ with itself
as Kx̂x̂ ∈ Rmx×mx , etc. Kernel matrices for Y can be defined analogously.
Semi-supervised Laplacian regularized generalization of above equation:
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m2
y
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Appendix
Laplacian Regularization

Graph Laplacian term L:

L = D−1/2(D −W )D−1/2

where W is the matrix of similarities between data points
and D is the diagonal matrix with entries of W ’s row sums

for similarity kernel (K )ij = exp
(
−‖xi−xj‖2

σ2

)
and diagonal of row sums (Dx̂ x̂)ii = ∑n+px

j=1 (Kx̂ x̂)ij .



Appendix
Data and Acquisition

I fMRI data of one human volunteer during viewing of 2
movies.

I 350 time slices of 3-dimensional fMRI brain volumes
acquired with Siemens 3T TIM scanner, separated by 3.2
s (TR), with a spatial resolution of 3x3x3 mm.

I Pre-processed according to standard procedures using the
Statistical Parametric Mapping (SPM) toolbox [6].



Appendix
Qualitative Results

Visualization of learned weight vectors (wx) for color and face stimuli, following [2].

(a) CCA, Tikhonov regularization

(b) CCA, Tikhonov and Laplacian regularization

(c) Semi-supervised CCA, Tikhonov and Laplacian regularization



Just a kitty
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